首页 - 网校 - 万题库 - 美好明天 - 直播 - 导航
热点搜索
学员登录 | 用户名
密码
新学员
老学员
您现在的位置: 考试吧 > 考研 > 2022考研大纲 > 考研专业课大纲 > 北京 > 正文

2012年中科院研究生院《高等数学(丙)》考研大纲

2012年中科院研究生院《高等数学(丙)》考研大纲。

 

  (三)一元函数积分学

  考试内容

  原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 变上限定积分定义的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 广义积分(无穷限积分、瑕积分) 定积分的应用

  考试要求

  1. 理解原函数的概念,理解不定积分和定积分的概念。

  2. 熟练掌握不定积分的基本公式,熟练掌握不定积分和定积分的性质及定积分中值定理。掌握牛顿-莱布尼茨公式。熟练掌握不定积分和定积分的换元积分法与分部积分法。

  3. 会求有理函数、三角函数有理式和简单无理函数的积分。

  4. 理解变上限定积分定义的函数,会求它的导数。

  5. 理解广义积分(无穷限积分、瑕积分)的概念,掌握无穷限积分、瑕积分的收敛性判别法,会计算一些简单的广义积分。

  6. 会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值。

  (四)多元函数微积分学

  考试内容

  多元函数的概念 二元函数的几何意义 二元函数的极限和连续 有界闭区域上多元连续函数的性质 多元函数偏导数和全微分的概念及求法 多元复合函数、隐函数的求导法 二阶偏导数的求法 多元函数的极值和条件极值 拉格朗日乘数法 多元函数的最大值、最小值及其简单应用 全微分在近似计算中的应用 二重积分的概念及性质 二重积分的计算和应用

  考试要求

  1. 理解多元函数的概念、理解二元函数的几何意义。

  2. 了解二元函数的极限与连续性的概念及基本运算性质,了解有界闭区域上二元连续函数的性质。

  3. 理解多元函数偏导数和全微分的概念,会求偏导数和全微分,掌握多元复合函数偏导数的求法,掌握隐函数的偏导数求法。

  3. 理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值、最小值,并会解决一些简单的应用问题。

  4. 了解全微分在近似计算中的应用。

  5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标)。

  (五)无穷级数

  考试内容

  常数项级数及其收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p级数及其收敛性 正项级数收敛性的判别法 交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 函数项级数的收敛域、和函数的概念 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 泰勒级数 初等函数的幂级数展开式 函数的幂级数展开式在近似计算中的应用

  考试要求

  1. 理解常数项级数的收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件

  2. 掌握几何级数与p级数的收敛与发散情况。

  3. 掌握正项级数收敛性的各种判别法。

  4. 了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,掌握交错级数的莱布尼茨判别法。

  5. 了解函数项级数的收敛域及和函数的概念。

  6. 理解幂级数的收敛域、收敛半径的概念,并掌握幂级数的收敛半径及收敛域的求法。

  7. 了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项微分和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和。

  8. 掌握一些常见函数如ex、sin x、cos x、ln(1+x)和(1+x)α等的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。

  9. 会利用函数的幂级数展开式进行近似计算。

  (六)常微分方程

  考试内容

  常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 伯努利(Bernoulli)方程 全微分方程 可用简单的变量代换求解的某些微分方程 可降价的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 二阶常系数非齐次线性微分方程 微分方程的简单应用

  考试要求

  1. 了解微分方程及其阶、解、通解、初始条件和特解等概念。

  2. 掌握变量可分离的微分方程的解法,掌握解一阶线性微分方程的常数变易法。

  3. 会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换求解某些微分方程。

  4. 会用降阶法解下列方程:y(n) =f(x),y″ =f(x,y′ )和y″ =f(y,y′ )

  5. 理解线性微分方程解的性质及解的结构定理。了解解二阶非齐次线性微分方程的常数变易法。

  6. 掌握二阶常系数齐次线性微分方程的解法。

  7. 会解自由项为多项式、指数函数、正弦函数、余弦函数、以及它们的和与积的二阶常系数非齐次线性微分方程。

  8 会用微分方程解决一些简单的应用问题。

文章搜索
万题库小程序
万题库小程序
·章节视频 ·章节练习
·免费真题 ·模考试题
微信扫码,立即获取!
扫码免费使用
考研英语一
共计364课时
讲义已上传
53214人在学
考研英语二
共计30课时
讲义已上传
5495人在学
考研数学一
共计71课时
讲义已上传
5100人在学
考研数学二
共计46课时
讲义已上传
3684人在学
考研数学三
共计41课时
讲义已上传
4483人在学
推荐使用万题库APP学习
扫一扫,下载万题库
手机学习,复习效率提升50%!
版权声明:如果考研网所转载内容不慎侵犯了您的权益,请与我们联系800@exam8.com,我们将会及时处理。如转载本考研网内容,请注明出处。
官方
微信
扫描关注考研微信
领《大数据宝典》
下载
APP
下载万题库
领精选6套卷
万题库
微信小程序
帮助
中心
文章责编:fengjun07