(六)多元函数积分学
考试内容
二重积分、三重积分的概念及性质 二重积分与三重积分的计算和应用 两类曲线积分的概念、性质及计算 两类曲线积分之间的关系 格林(Green)公式 平面曲线积分与路径无关的条件 已知全微分求原函数 两类曲面积分的概念、性质及计算 两类曲面积分之间的关系 高斯(Gauss)公式 斯托克斯(Stokes)公式 散度、旋度的概念及计算 曲线积分和曲面积分的应用
考试要求
1. 理解二重积分、三重积分的概念,掌握重积分的性质。
2. 熟练掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标),掌握二重积分的换元法。
3. 理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。熟练掌握计算两类曲线积分的方法。
4. 熟练掌握格林公式,会利用它求曲线积分。掌握平面曲线积分与路径无关的条件。会求全微分的原函数。
5. 理解两类曲面积分的概念,了解两类曲面积分的性质及两类曲面积分的关系。熟练掌握计算两类曲面积分的方法。
6. 掌握高斯公式和斯托克斯公式,会利用它们计算曲面积分和曲线积分。
7. 了解散度、旋度的概念,并会计算。
8. 了解含参变量的积分和莱布尼茨公式。
9. 会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、曲面的面积、物体的体积、曲线的弧长、物体的质量、重心、转动惯量、引力、功及流量等)。
(七)无穷级数
考试内容
常数项级数及其收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p级数及其收敛性 正项级数收敛性的判别法 交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 函数项级数的收敛域、和函数的概念 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 泰勒级数 初等函数的幂级数展开式 函数的幂级数展开式在近似计算中的应用 函数的傅里叶(Fourier)系数与傅里叶级数 狄利克雷(Dirichlet)定理 函数在[-l,l]上的傅里叶级数 函数在[0,l]上的正弦级数和余弦级数。函数项级数的一致收敛性。
考试要求
1. 理解常数项级数的收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件
2. 掌握几何级数与p级数的收敛与发散情况。
3. 熟练掌握正项级数收敛性的各种判别法。
4. 熟练掌握交错级数的莱布尼茨判别法。
5. 理解任意项级数的绝对收敛与条件收敛的概念,以及绝对收敛与条件收敛的关系。
6. 了解函数项级数的收敛域及和函数的概念。
7. 理解幂级数的收敛域、收敛半径的概念,并掌握幂级数的收敛半径及收敛域的求法。
8. 了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项微分和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和。
9. 了解函数展开为泰勒级数的充分必要条件。
10. 掌握一些常见函数如ex、sin x、cos x、ln(1+x)和(1+x)α等的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。
11. 会利用函数的幂级数展开式进行近似计算。
12.了解傅里叶级数的概念和狄利克雷定理,会将定义在[-l,l]上的函数展开为傅里叶级数,会将定义在[0,l]上的函数展开为正弦级数与余弦级数,会将周期为2l的函数展开为傅里叶级数。
13. 了解函数项级数的一致收敛性及一致收敛的函数项级数的性质,会判断函数项级数的一致收敛性。
(八)常微分方程
考试内容
常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 伯努利(Bernoulli)方程 全微分方程 可用简单的变量代换求解的某些微分方程 可降价的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 二阶常系数非齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 欧拉(Euler)方程 微分方程的幂级数解法 简单的常系数线性微分方程组的解法 微分方程的简单应用
考试要求
1. 掌握微分方程及其阶、解、通解、初始条件和特解等概念。
2. 熟练掌握变量可分离的微分方程的解法,熟练掌握解一阶线性微分方程的常数变易法。
3. 会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换求解某些微分方程。
4. 会用降阶法解下列方程:y(n) =f(x),y″ =f(x,y′ )和y″ =f(y,y′ )
5. 理解线性微分方程解的性质及解的结构定理。了解解二阶非齐次线性微分方程的常数变易法。
6. 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。
7. 会解自由项为多项式、指数函数、正弦函数、余弦函数、以及它们的和与积的二阶常系数非齐次线性微分方程。
8. 会解欧拉方程。
9. 了解微分方程的幂级数解法。
10.了解简单的常系数线性微分方程组的解法。
11 会用微分方程解决一些简单的应用问题。
五、主要参考文献
《高等数学》(上、下册),同济大学数学教研室主编,高等教育出版社,1996年第四版,以及其后的任何一个版本均可。
编制单位:中国科学院研究生院
· | 2022考研复试联系导师有哪些注意事 | 04-28 |
· | 2022考研复试面试常见问题 | 04-28 |
· | 2022年考研复试面试回答提问方法有 | 04-28 |
· | 2022考研复试怎么缓解缓解焦虑心态 | 04-27 |
· | 2022年考研复试的诀窍介绍 | 04-27 |
· | 2022年考研复试英语如何准备 | 04-26 |
· | 2022年考研复试英语口语常见句式 | 04-26 |
· | 2022年考研复试的四个细节 | 04-26 |
· | 2022考研复试准备:与导师及时交流 | 04-26 |
· | 2022考研复试面试的综合技巧 | 04-26 |