练习 七
1选择题
(1)(第34届美国数学竞赛题)把相乘,其乘积是一个多项式,该多项式的次数是( )
(A)2 (B)3 (C)6 (D)7 (E)8
(3) 已知则的值是( ).
(A)1 (B)0 (C)-1 (D)3
(3)(第37届美国中学数学竞赛题)假定x和y是正数并且成反比,若x增加了p%,则y减少了( ).
(A)p% (B)% (C)% (D)% (E)%
2填空题
(1)(x-3)5=ax5+bx4+cx3+dx2+ex+f,则a+b+c+d+e+f=________, b+c+d+e=_______.
(2)若=_____.
(3)已知y1=2x,y2=,则y1y1986=______
3若(x-z)2-4(x-y)(y-z)=0,试求x+z与y的关系.
4(1985年宁夏初中数学竞赛题)把写成两个因式的积,使它们的和为,求这两个式子.
5.若x+3y+5z=0,2x+4y+7z=0.求的值.
6.已知x,y,z为互不相等的三个数,求证
7已知a2+c2=2b2,求证
8.设有多项式f(x)=4x4-4px3+4qx2+2q(m+1)x+(m+1)2,求证:
如果f(x)的系数满足p2-4q-4(m-1)=0,那么,f(x)恰好是一个二次三项式的平方.
9.设(a+b)(b+c)(c+d)(d+a)=(a+b+c+d)(bcd+cda+dab+abc).求证:ac=bd.
练习七
1.C.C.E
2.(1)-32,210 (2) (3)2
3.略.
4.
5. 6.略, 7.略.
8.∵p2-4q-4(m+1)=0, ∴4q=p2-4(m+1)=0,
∴f(x)
=4x4-4px3+[p2-4(m+1)]x2+2p·(m+1)x+(m+1)2
=4x4+p2x2+(m+1)2-4px3-4(m+1)x2+2p(m+1)x
=[2x2-px-(m+1)]2.
9.令a+b=p,c+d=q,由条件化为
pq(b+c)(d+a)=(p+q)(cdp+adq),
展开整理得cdp2-(ac+bd)+pq+abq2=0,
即(cp-bq)(dp-aq)=0.
于是cp=bq或dp=aq,即c(a+b)=b(c+a)或d(a+b)=a(c+d).
均可得出ac=bd.
相关推荐:·2021中考语文阅读理解最全的33套答题公式 (2020-11-10 17:20:05)
·2020中考生物知识点结构图分类整理:健康的生活 (2019-11-8 14:54:53)
·2020中考生物知识点结构图分类整理:生物技术 (2019-11-8 14:53:20)
·2020中考生物知识点结构图分类整理:生物的多样性 (2019-11-8 14:50:27)
·2020中考生物知识点结构图分类整理:生物的生殖发育与遗 (2019-11-8 14:48:17)
2022年海南中考地理真题及答案已公布
2022年海南中考生物真题及答案已公布
2022年海南中考历史真题及答案已公布
2022年海南中考政治真题及答案已公布
2022年海南中考化学真题及答案已公布
2022年海南中考物理真题及答案已公布
2022年海南中考英语真题及答案已公布
2022年海南中考数学真题及答案已公布
2022年海南中考语文真题及答案已公布
国家 | 北京 | 天津 | 上海 | 重庆 |
河北 | 山西 | 辽宁 | 吉林 | 江苏 |
浙江 | 安徽 | 福建 | 江西 | 山东 |
河南 | 湖北 | 湖南 | 广东 | 广西 |
海南 | 四川 | 贵州 | 云南 | 西藏 |
陕西 | 甘肃 | 宁夏 | 青海 | 新疆 |
黑龙江 | 内蒙古 | 更多 |
·执业医师考试培训 试听 ·经济师考试培训 试听
·执业药师考试培训 试听 ·报关员考试培训 试听
·银行从业考试培训 试听 ·会计证考试培训 试听
·证券从业考试培训 试听 ·华图公务员培训 试听
·二级建造师考试培训 试听 ·公务员培训 网校 试听
·一级建造师考试培训 试听 ·结构师考试培训 试听
·注册建筑师考试培训 试听 ·造价师考试培训 试听
·质量资格考试培训 试听 ·咨询师考试培训 试听
·卫生职称考试培训 试听 ·监理师考试培训 试听