各地中考
您现在的位置: 考试吧 > 2021中考 > 中考竞赛 > 数学竞赛 > 正文

2011年中招考试:《初中数学》竞赛训练题(3)

来源:考试吧(Exam8.com) 2011-3-4 8:28:10 要考试,上考试吧! 万题库
考试吧提供了“2011年中招考试:《初中数学》竞赛训练题”,帮助考生梳理知识点,备战2011年中招考试。

  三、解答题:

  13.已知a, b, c∈R+,且满足 ≥(a+b)2+(a+b+4c)2,求k的最小值。

  解:因为(a+b)2+(a+b+4c)2=(a+b)2+[(a+2c)+(b+2c)]2≥(2 )2+(2 +2 )2=

  4ab+8ac+8bc+16c 。所以 ≥ 。

  当a=b=2c>0时等号成立。故k的最小值为100。

  14.已知半径为1的定圆⊙P的圆心P到定直线 的距离为2,Q是 上一动点,⊙Q与⊙P相外切,⊙Q交 于M、N两点,对于任意直径MN,平面上恒有一定点A,使得∠MAN为定值。求∠MAN的度数。

  解:以 为x轴,点P到 的垂线为y轴建立如图所示的直角坐标系,设Q的坐标为(x, 0),点A(k, λ),⊙Q的半径为r,则:M(x-r, 0), N(x+r, 0), P(2, 0), PQ= =1+r。所以x=± , ∴tan∠MAN= ,令2m=h2+k2-3,tan∠MAN= ,所以m+r k =nhr,∴m+(1-nh)r= ,两边平方,得:m2+2m(1-nh)r-(1-nh)2r2=k2r2+2k2r-3k2,因为对于任意实数r≥1,上式恒成立,所以 ,由(1)(2)式,得m=0, k=0,由(3)式,得n= 。由2m=h2+k2-3得h=± ,所以tan∠MAN= =h=± 。所以∠MAN=60°或120°(舍)(当Q(0, 0), r=1时∠MAN=60°),故∠MAN=60°。

  15. 数列 定义如下: ,且当 时, 已知 ,求正整数n.

  解 由题设易知, .又由 ,可得,当n为偶数时, ;当 是奇数时, .

  由 ,所以n为偶数,于是 ,所以, 是奇数.

  于是依次可得:

  , 是偶数,

  , 是奇数,

  , 是偶数,

  , 是奇数,

  , 是偶数,

  , 是偶数,

  , 是奇数,

  , 是偶数,

  , 是奇数,

  , 是偶数,

  ,

  所以, ,解得,n=238.

上一页  1 2 3 
  相关推荐:

  2011年中招考试:《初中数学》竞赛讲座汇总

  2011年中考数学备考辅导:选择题精选汇总

  名师解读南京2011年中考数学命题趋势

文章搜索
国家 北京 天津 上海 重庆
河北 山西 辽宁 吉林 江苏
浙江 安徽 福建 江西 山东
河南 湖北 湖南 广东 广西
海南 四川 贵州 云南 西藏
陕西 甘肃 宁夏 青海 新疆
黑龙江 内蒙古 更多
中考栏目导航
版权声明:如果中考网所转载内容不慎侵犯了您的权益,请与我们联系800@exam8.com,我们将会及时处理。如转载本中考网内容,请注明出处。
免费复习资料
最新中考资讯
文章责编:魏超杰