二、填空题
1. (2014•山东枣庄,第18题4分)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为 (3 +3 ) cm.
考点: 平面展开-最短路径问题;截一个几何体
分析: 要求蚂蚁爬行的最短距离,需将图②的几何体表面展开,进而根据“两点之间线段最短”得出结果.
解答: 解:如图所示:
△BCD是等腰直角三角形,△ACD是等边三角形,
在Rt△BCD中,CD= =6 cm,
∴BE=CD=3 cm,
在Rt△ACE中,AE= =3 cm,
∴从顶点A爬行到顶点B的最短距离为(3 +3 )cm.
故答案为:(3 +3 ).
点评: 考查了平面展开﹣最短路径问题,本题就是把图②的几何体表面展开成平面图形,根据等腰直角三角形的性质和等边三角形的性质解决问题.
2. ( 2014•福建泉州,第13题4分)如图,直线a∥b,直线c与直线a,b都相交,∠1=65°,则∠2= 65 °.
考点: 平行线的性质.
分析: 根据平行线的性质得出∠1=∠2,代入求出即可.
解答: 解:∵直线a∥b,
∴∠1=∠2,
∵∠1=65°,
∴∠2=65°,
故答案为:65.
点评: 本题考查了平行线的性质的应用,注意:两直线平行,同位角相等.
3. ( 2014•福建泉州,第15题4分)如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD= 110 °.
考点: 等腰三角形的性质.
分析: 先根据等腰三角形的性质和三角形的内角和定理求出∠A,再根据三角形的外角等于等于与它不相邻的两个内角的和,进行计算即可.
解答: 解:∵CA=CB,
∴∠A=∠ABC,
∵∠C=40°,
∴∠A=70°
∴∠ABD=∠A+∠C=110°.
故答案为:110.
点评: 此题考查了等腰三角形的性质,用到的知识点是等腰三角形的性质、三角形的外角等于等于与它不相邻的两个内角的和.
4.(2014•邵阳,第11题3分)已知∠α=13°,则∠α的余角大小是 77° .
考点: 余角和补角.
分析: 根据互为余角的两个角的和等于90°列式计算即可得解.
解答: 解:∵∠α=13°,
∴∠α的余角=90°﹣13°=77°.
故答案为:77°.
点评: 本题考查了余角的定义,是基础题,熟记概念是解题的关键.
5.(2014•浙江湖州,第13题4分)计算:50°﹣15°30′= .
分析:根据度化成分乘以60,可得度分的表示方法,根据同单位的相减,可得答案.
解:原式=49°60′﹣15°30′=34°30′,故答案为:34°30′.
点评:此类题是进行度、分、秒的加法计算,相对比较简单,注意以60为进制即可.
6. ( 2014•福建泉州,第9题4分)如图,直线AB与CD相交于点O,∠AOD=50°,则∠BOC= 50 °.
考点: 对顶角、邻补角.
分析: 根据对顶角相等,可得答案.
解答: 解;∵∠BOC与∠AOD是对顶角,
∴∠BOC=∠AOD=50°,
故答案为:50.
点评: 本题考查了对顶角与邻补角,对顶角相等是解题关键.
编辑推荐:
·2021年中考英语备考练习题及答案(12) (2021-5-25 16:53:44)
·2021年中考英语备考练习题及答案(11) (2021-5-25 16:49:08)
·2019年浙江中考语文模拟试题 (2019-6-10 16:56:04)
·2019年上海中考语文模拟试题 (2019-6-10 16:55:04)
·2019年安徽中考语文模拟试卷 (2019-6-10 16:54:11)
2022年海南中考地理真题及答案已公布
2022年海南中考生物真题及答案已公布
2022年海南中考历史真题及答案已公布
2022年海南中考政治真题及答案已公布
2022年海南中考化学真题及答案已公布
2022年海南中考物理真题及答案已公布
2022年海南中考英语真题及答案已公布
2022年海南中考数学真题及答案已公布
2022年海南中考语文真题及答案已公布
国家 | 北京 | 天津 | 上海 | 重庆 |
河北 | 山西 | 辽宁 | 吉林 | 江苏 |
浙江 | 安徽 | 福建 | 江西 | 山东 |
河南 | 湖北 | 湖南 | 广东 | 广西 |
海南 | 四川 | 贵州 | 云南 | 西藏 |
陕西 | 甘肃 | 宁夏 | 青海 | 新疆 |
黑龙江 | 内蒙古 | 更多 |
·执业医师考试培训 试听 ·经济师考试培训 试听
·执业药师考试培训 试听 ·报关员考试培训 试听
·银行从业考试培训 试听 ·会计证考试培训 试听
·证券从业考试培训 试听 ·华图公务员培训 试听
·二级建造师考试培训 试听 ·公务员培训 网校 试听
·一级建造师考试培训 试听 ·结构师考试培训 试听
·注册建筑师考试培训 试听 ·造价师考试培训 试听
·质量资格考试培训 试听 ·咨询师考试培训 试听
·卫生职称考试培训 试听 ·监理师考试培训 试听