2019年浙江省杭州市拱墅区中考数学月考试卷
一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的注意可以用多种不同的方法来选取正确答案.
1.(3分)(2012•武汉)如图,是由4个相同小正方体组合而成的几何体,它的左视图是( )
2.(3分)(2014•舟山模拟)如图,已知四条直线a,b,c,d,其中a∥b,c⊥b,且∠1=50°.则∠2=( )
3.(3分)(2014•舟山模拟)下列计算或化简正确的是( )
4.(3分)(2019•拱墅区一模)下列因式分解正确的是( )
5.(3分)(2014•昆都仑区一模)将一个半径为R,圆心角为90°的扇形围成一个圆锥的侧面(无重叠),设圆锥底面半径为r,则R与r的关系正确的是( )
6.(3分)(2014•日照一模)某校在七年级设立了六个课外兴趣小组,每个参加者只能参加一个兴趣小组,如图是六个兴趣小组不完整的频数分布直方图和扇形统计图. 根据图中信息,可得下列结论不正确的是( )
7.(3分)(2019•拱墅区一模)下列说法中正确的是( )
8.(3分)(2019•拱墅区一模)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=1,其图象一部分如图所示,对于下列说法:
9.(3分)(2014•齐齐哈尔二模)如图,在△ABC中,已知∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:
①四边形CEDF有可能成为正方形;②△DFE是等腰直角三角形;③四边形CEDF的面积是定值;④点C到线段EF的最大距离为.其中正确的结论是( )
10.(3分)(2019•拱墅区一模)关于x的方程x2﹣px﹣2q=0(p,q是正整数),若它的正根小于或等于4,则正根是整数的概率是( )
二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.
11.(4分)(2019•拱墅区一模)计算:3a•(﹣2a)= _________ ;(2ab2)3= _________ .
12.(4分)(2019•拱墅区一模)五位射击运动员在一次射击练习中,每人打10抢,成绩(单位:环)记录如下:97,98,95,97,93.则这组数据的众数是 _________ ;平均数是 _________ .
13.(4分)(2012•佛山)某药品原价是100元,经连续两次降价后,价格变为64元,如果每次降价的百分率是一样的,那么每次降价的百分率是 _________ .
14.(4分)(2019•拱墅区一模)如图,AB是⊙O的直径,AE交⊙O于点F且与⊙O的切线CD互相垂直,垂足为D,连结AC,OC,CB.有下列结论:①∠1=∠2;②OC∥AE;③AF=OC;④△ADC∽△ACB.其中结论正确的是 _________ (写出序号).
15.(4分)(2019•拱墅区一模)在面积为12的平行四边形ABCD中,过点A作直线BC的垂线交BC于点E,过点A作直线CD的垂线交CD于点F,若AB=4,BC=6,则CE+CF的值为 _________ .
16.(4分)(2019•拱墅区一模)在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,第2011个正方形的面积为 _________ .
三、全面答一答(本题有8个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.
17.(6分)(2012•黑河)先化简,再求值:(a﹣)÷,其中a=sin30°,b=tan45°.
18.(8分)(2019•拱墅区一模)设函数y=ax2+bx+1,其中a可取的值是﹣1,0,1; b可取的值是﹣1,1,2;
(1)当a、b 分别取何值时所得函数有最小值?请直接写出满足条件的这些函数和相应的最小值;
(2)如果a在﹣1,0,1三个数中随机抽取一个,b在﹣1,1,2中随机抽取一个,共可得到多少个不同的函数解析式?在这些函数解析式中任取一个,求取到当x>0时y随x增大而减小的函数的概率.
19.(8分)(2019•拱墅区一模)(1)在图1中,求作△ABC的外接圆(尺规作图,不写作法保留痕迹);
(2)如图2,若△ABC的内心为O,且BA=BC=8,sinA=,求△ABC的内切圆半径.
20.(10分)(2019•拱墅区一模)如图,正方形ABCD的边长为3,将正方形ABCD绕点A顺时针旋转角度α(0°<α<90°),得到正方形AEFG,FE交线段DC于点Q,FE的延长线交线段BC于点P,连结AP、AQ.
(1)求证:△ADQ≌△AEQ;
(2)求证:PQ=DQ+PB;
(3)当∠1=∠2时,求PQ的长.
21.(10分)(2019•拱墅区一模)某商店采购甲、乙两种型号的电风扇,共花费15000元,所购进甲型电风扇的数量不少于乙型数量的2倍,但不超过乙型数量的3倍.现已知甲型每台进价150元,乙型每台进价300元,并且销售甲型每台获得利润30元,销售乙型每台获得利润75元.设商店购进乙型电风扇x台.
(1)商店共有多少种采购电风扇方案?
(2)若商店将购进的甲、乙两种型号的电风扇全部售出,写出此商店销售这两种电风扇所获得的总利润y(元)与购进乙型电风扇的台数x(台)之间的函数关系式;
(3)商店怎样的采购方案所获得的利润最大?求出此时利润最大值.
22.(12分)(2019•拱墅区一模)如图,在R t△AOB中,已知AO=6,BO=8,点E从A点出发,向O点移动,同时点F从O点出发沿OB﹣BA向点A移动,点E的速度为每秒1个单位,点F的速度为每秒3个单位,当其中一点到达终点时,另一点随即停止移动.设移动时间为x秒:
(1)当x=2时,求△AEF的面积;
(2)当EF∥BO时,求x的值;
(3)设△AEF的面积为y,求出y关于x的函数关系式.
23.(12分)(2019•拱墅区一模)如图,已知抛物线y=ax2+bx+c(a≠0)的图象经过原点O,交x轴于点A,其顶点B的坐标为(3,).
(1)直接写出抛物线的解析式及点A的坐标;
(2)设抛物线上的点Q,使△QAO与△AOB相似(不全等),求出点Q的坐标;
(3)在(2)的条件下,已知点M(0, ),连结QM并延长交抛物线另一点R,在直线QR下方的抛物线上找点P,当△PQR面积最大时,求点P的坐标及S△PQR的最大值.
相关推荐:
各地2019中考报名时间 ※ 2019中考时间安排 ※ 关注微信先报名
2019中考报考指南 ※ 中考报名方法 ※ 中考报名条件
·2021年中考英语备考练习题及答案(12) (2021-5-25 16:53:44)
·2021年中考英语备考练习题及答案(11) (2021-5-25 16:49:08)
·2019年浙江中考语文模拟试题 (2019-6-10 16:56:04)
·2019年上海中考语文模拟试题 (2019-6-10 16:55:04)
·2019年安徽中考语文模拟试卷 (2019-6-10 16:54:11)
2022年海南中考地理真题及答案已公布
2022年海南中考生物真题及答案已公布
2022年海南中考历史真题及答案已公布
2022年海南中考政治真题及答案已公布
2022年海南中考化学真题及答案已公布
2022年海南中考物理真题及答案已公布
2022年海南中考英语真题及答案已公布
2022年海南中考数学真题及答案已公布
2022年海南中考语文真题及答案已公布
国家 | 北京 | 天津 | 上海 | 重庆 |
河北 | 山西 | 辽宁 | 吉林 | 江苏 |
浙江 | 安徽 | 福建 | 江西 | 山东 |
河南 | 湖北 | 湖南 | 广东 | 广西 |
海南 | 四川 | 贵州 | 云南 | 西藏 |
陕西 | 甘肃 | 宁夏 | 青海 | 新疆 |
黑龙江 | 内蒙古 | 更多 |
·执业医师考试培训 试听 ·经济师考试培训 试听
·执业药师考试培训 试听 ·报关员考试培训 试听
·银行从业考试培训 试听 ·会计证考试培训 试听
·证券从业考试培训 试听 ·华图公务员培训 试听
·二级建造师考试培训 试听 ·公务员培训 网校 试听
·一级建造师考试培训 试听 ·结构师考试培训 试听
·注册建筑师考试培训 试听 ·造价师考试培训 试听
·质量资格考试培训 试听 ·咨询师考试培训 试听
·卫生职称考试培训 试听 ·监理师考试培训 试听