各地中考
您现在的位置: 考试吧 > 2021中考 > 复习指导 > 中考数学 > 正文

2010年中考数学总复习:相交线与平行线(1)

来源:考试吧(Exam8.com) 2009-11-4 10:12:54 要考试,上考试吧! 万题库

  ★重点★相交线与平行线、三角形、四边形的有关概念、判定、性质。

   内容提要

  一、 直线、相交线、平行线

  1。线段、射线、直线三者的区别与联系

  从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。

  2。线段的中点及表示

  3。直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)

  4。两点间的距离(三个距离:点-点;点-线;线-线)

  5。角(平角、周角、直角、锐角、钝角)

  6。互为余角、互为补角及表示方法

  7。角的平分线及其表示

  8。垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”)

  9。对顶角及性质

  10。平行线及判定与性质(互逆)(二者的区别与联系)

  11。常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。

  12。定义、命题、命题的组成

  13。公理、定理

  14。逆命题

  二、 三角形

  分类:⑴按边分;

  ⑵按角分

  1。定义(包括内、外角)

  2。三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。⑶角与边:在同一三角形中,

  3。三角形的主要线段

  讨论:①定义②线的交点—三角形的心③性质

  ① 高线②中线③角平分线④中垂线⑤中位线

  ⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形

  4。特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质    |||

  5。全等三角形

  ⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

  ⑵特殊三角形全等的判定:①一般方法②专用方法

  6。三角形的面积

  ⑴一般计算公式⑵性质:等底等高的三角形面积相等。

  7。重要辅助线

  ⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线

  8。证明方法

  ⑴直接证法:综合法、分析法

  ⑵间接证法—反证法:①反设②归谬③结论

  ⑶证线段相等、角相等常通过证三角形全等

  ⑷证线段倍分关系:加倍法、折半法

  ⑸证线段和差关系:延结法、截余法

  ⑹证面积关系:将面积表示出来

  三、 四边形

  分类表:

  1。一般性质(角)

  ⑴内角和:360°

  ⑵顺次连结各边中点得平行四边形。

  推论1:顺次连结对角线相等的四边形各边中点得菱形。

  推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。

  ⑶外角和:360°

  2。特殊四边形

  ⑴研究它们的一般方法:

  ⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定

  ⑶判定步骤:四边形→平行四边形→矩形→正方形

  ┗→菱形——↑

  ⑷对角线的纽带作用:

  3。对称图形

  ⑴轴对称(定义及性质);⑵中心对称(定义及性质)

  4。有关定理:①平行线等分线段定理及其推论1、2

  ②三角形、梯形的中位线定理

  ③平行线间的距离处处相等。(如,找下图中面积相等的三角形)

  5。重要辅助线:①常连结四边形的对角线;②梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。

  6。作任意等分线段。

2010年中考数学总复习:实数的性质和运算

2010年中考数学总复习:代数式的运算

2010年中考数学总复习:样本平均数计算

    
文章搜索
国家 北京 天津 上海 重庆
河北 山西 辽宁 吉林 江苏
浙江 安徽 福建 江西 山东
河南 湖北 湖南 广东 广西
海南 四川 贵州 云南 西藏
陕西 甘肃 宁夏 青海 新疆
黑龙江 内蒙古 更多
中考栏目导航
版权声明:如果中考网所转载内容不慎侵犯了您的权益,请与我们联系800@exam8.com,我们将会及时处理。如转载本中考网内容,请注明出处。
免费复习资料
最新中考资讯
文章责编:liujun1987