高中数学《圆的一般方程》教案
一、教学目标
【知识与技能】在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径。掌握方程表示圆的条件。
【过程与方法】通过对方程 表示圆的条件的探究,学生探索发现及分析解决问题的实际能力得到提高
【情感态度与价值观】渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。
二、教学重难点
【重点】掌握圆的一般方程,以及用待定系数法求圆的一般方程。
【难点】二元二次方程与圆的一般方程及标准圆方程的关系。
三、教学过程
(一)复习旧知,引出课题
1.复习圆的标准方程,圆心、半径。
2.提问1:已知圆心为(1,-2)、半径为2的圆的方程是什么?
(二)交流讨论,探究新知
1.提问2:方程是什么图形?方程表示什么图形?任何圆的方程都是这样的二元二次方程吗?(通过此例分析引导学生使用配方法)
2.方程什么条件下表示圆?(配方和展开由学生相互讨论交流完成,教师最后展示结果)
将配方得:
3.学生在教师的引导下对方程分类讨论,最后师生共同总结出3种情况,即圆的一般方程表示圆的条件。从而得出圆的一般方程式:
4.由学生归纳圆的一般方程的特点,师生共同总结。
(三)例题讲解,深化新知
例1.判断下列二元二次方程是否表示圆的方程?如果是,请求出圆的圆心及半径。
(1) (2)
例2.求过三点A(0,0),B(1,1),C(4,2)的圆的方程,并求这个圆的半径长和圆心坐标。
(四)小结作业
师生共同总结今天这节课所学知识点
作业:分必做题和选做题。
四、板书设计
五、教学反思
教师资格题库【手机题库下载】 | 微信搜索"考试吧教师资格"
相关推荐: