学历中考高考考研专升本自考成考工程 一建二建一造二造一消二消安全会计经济师初级会计中级会计注会资格公务员教师人力社工
医学药师医师护士初级护师主管护师卫生资格临床
临床助理
中医
中医助理
口腔医师
金融基金证券银行期货外语四六级计算机等考软考
『久期,全称麦考雷久期-Macaulay duration, 数学定义
如果市场利率是Y,现金流(X1,X2,...,Xn)的麦考雷久期定义为:
D(Y)=[1*X1/(1+Y)^1+2*X2/(1+Y)^2+...+n*Xn/(1+Y)^n]/[X0+x1/(1+Y)^1+X2/(1+Y)^2+...+Xn/(1+Y)^n]
即 D=(1*PVx1+...n*PVxn)/PVx
其中,PVXi表示第i期现金流的现值,D表示久期。
通过下面例子可以更好理解久期的定义。
例子:假设有一债券,在未来n年的现金流为(X1,X2,...Xn),其中Xi表示第i期的现金流。假设现在利率为Y0,投资者持有现金流不久,利率立即发生变化,变为Y,问:应该持有多长时间,才能使得其到期的价值不低于现在的价值?
通过下面定理可以快速解答上面问题。
定理:PV(Y0)*(1+Y0)^q<=PV(Y)(1+Y)^q的必要条件是q=D(Y0)。这里D(Y0)=(X1/(1+Y0)+2*X2/(1+Y0)^2+...+n*Xn/(1+Y0)^n)/PV(Y0)
q即为所求时间,即为久期。
上述定理的证明可通过对Y导数求倒数,使其在Y=Y0取局部最小值得到。(容易)』
相关推荐:关于建立股指期货投资者适当性制度的规定(试行)